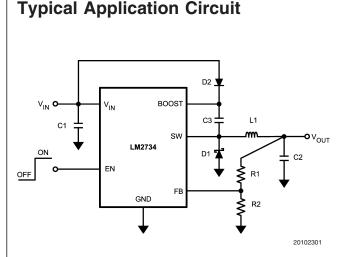
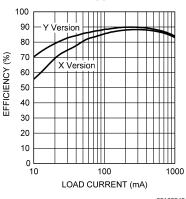
# Joohongo.

## LM2734 Thin SOT23 1A Load Step-Down DC-DC Regulator General Description Features


The LM2734 regulator is a monolithic, high frequency, PWM step-down DC/DC converter in a 6-pin Thin SOT23 package. It provides all the active functions to provide local DC/DC conversion with fast transient response and accurate regulation in the smallest possible PCB area.

With a minimum of external components and online design support through WEBENCH<sup>™</sup>, the LM2734 is easy to use. The ability to drive 1A loads with an internal  $300m\Omega$  NMOS switch using state-of-the-art 0.5µm BiCMOS technology results in the best power density available. The world class control circuitry allows for on-times as low as 13ns, thus supporting exceptionally high frequency conversion over the entire 3V to 20V input operating range down to the minimum output voltage of 0.8V. Switching frequency is internally set to 550kHz (LM2734Y) or 1.6MHz (LM2734X), allowing the use of extremely small surface mount inductors and chip capacitors. Even though the operating frequencies are very high, efficiencies up to 90% are easy to achieve. External shutdown is included, featuring an ultra-low stand-by current of 30nA. The LM2734 utilizes current-mode control and internal compensation to provide high-performance regulation over a wide range of operating conditions. Additional features include internal soft-start circuitry to reduce inrush current, pulse-by-pulse current limit, thermal shutdown, and output over-voltage protection.


- Thin SOT23-6 package
- 3.0V to 20V input voltage range
- 0.8V to 18V output voltage range
- 1A output current
- 550kHz (LM2734Y) and 1.6MHz (LM2734X) switching frequencies
- 300mΩ NMOS switch
- 30nA shutdown current
- 0.8V, 2% internal voltage reference
- Internal soft-start
- Current-Mode, PWM operation
- WEBENCH online design tool

#### **Applications**

- Local Point of Load Regulation
- Core Power in HDDs
- Set-Top Boxes
- Battery Powered Devices
- USB Powered Devices
- DSL Modems
- Notebook Computers



#### Efficiency vs Load Current V<sub>IN</sub> = 5V, V<sub>OUT</sub> = 3.3V



20102345

## **Connection Diagram**



## **Ordering Information**

| Order Number | Package Type | NSC Package Drawing | Package Marking | Supplied As                 |
|--------------|--------------|---------------------|-----------------|-----------------------------|
| LM2734XMK    | TSOT-6       | MK06A               | SFDB            | 1000 Units on Tape and Reel |
| LM2734YMK    |              |                     | SFEB            | 1000 Units on Tape and Reel |
| LM2734XMKX   | 1301-0       |                     | SFDB            | 3000 Units on Tape and Reel |
| LM2734YMKX   |              |                     | SFEB            | 3000 Units on Tape and Reel |

\* Contact the local sales office for the lead-free package.

#### **Pin Description**

| Pin | Name            | Function                                                         |  |  |
|-----|-----------------|------------------------------------------------------------------|--|--|
| 1   | BOOST           | Boost voltage that drives the internal NMOS control switch. A    |  |  |
|     |                 | bootstrap capacitor is connected between the BOOST and SW        |  |  |
|     |                 | pins.                                                            |  |  |
| 2   | GND             | Signal and Power ground pin. Place the bottom resistor of the    |  |  |
|     |                 | feedback network as close as possible to this pin for accurate   |  |  |
|     |                 | regulation.                                                      |  |  |
| 3   | FB              | Feedback pin. Connect FB to the external resistor divider to set |  |  |
|     |                 | output voltage.                                                  |  |  |
| 4   | EN              | Enable control input. Logic high enables operation. Do not allow |  |  |
|     |                 | this pin to float or be greater than $V_{IN}$ + 0.3V.            |  |  |
| 5   | V <sub>IN</sub> | Input supply voltage. Connect a bypass capacitor to this pin.    |  |  |
| 6   | SW              | Output switch. Connects to the inductor, catch diode, and        |  |  |
|     |                 | bootstrap capacitor.                                             |  |  |

#### Absolute Maximum Ratings (Note 1)

#### Soldering Information

| Infrared/Convection Reflow (15sec) | 220°C |
|------------------------------------|-------|
| Wave Soldering Lead Temp. (10sec)  | 260°C |

| V <sub>IN</sub>             | -0.5V to 24V                      |
|-----------------------------|-----------------------------------|
| SW Voltage                  | -0.5V to 24V                      |
| Boost Voltage               | -0.5V to 30V                      |
| Boost to SW Voltage         | -0.5V to 6.0V                     |
| FB Voltage                  | -0.5V to 3.0V                     |
| EN Voltage                  | -0.5V to (V <sub>IN</sub> + 0.3V) |
| Junction Temperature        | 150°C                             |
| ESD Susceptibility (Note 2) | 2kV                               |
| Storage Temp. Range         | -65°C to 150°C                    |

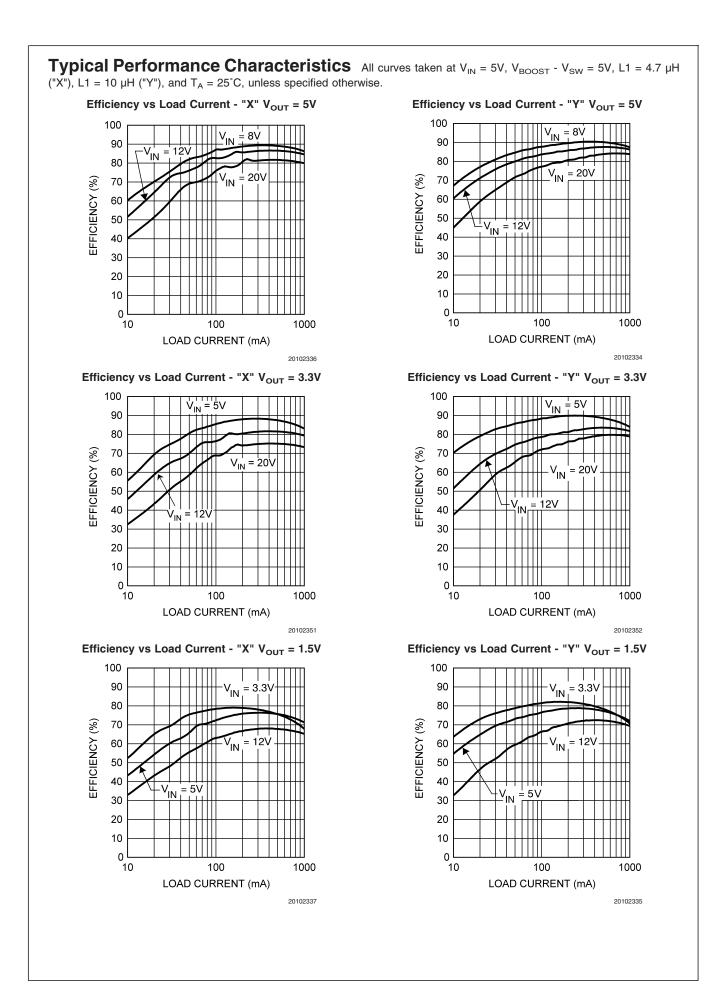
#### Operating Ratings (Note 1)

| V <sub>IN</sub>                           | 3V to 20V       |
|-------------------------------------------|-----------------|
| SW Voltage                                | -0.5V to 20V    |
| Boost Voltage                             | -0.5V to 25V    |
| Boost to SW Voltage                       | 1.6V to 5.5V    |
| Junction Temperature Range                | –40°C to +125°C |
| Thermal Resistance $\theta_{JA}$ (Note 3) | 118°C/W         |

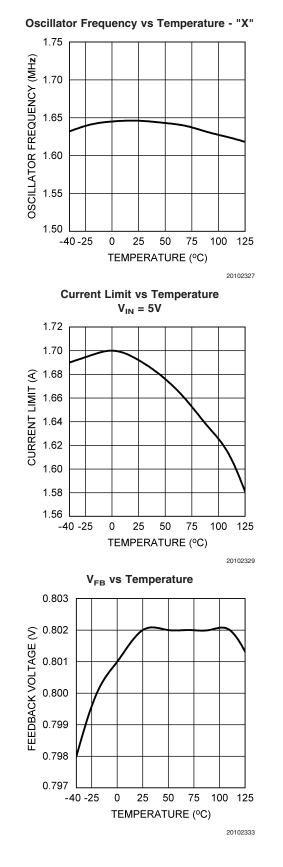
#### **Electrical Characteristics**

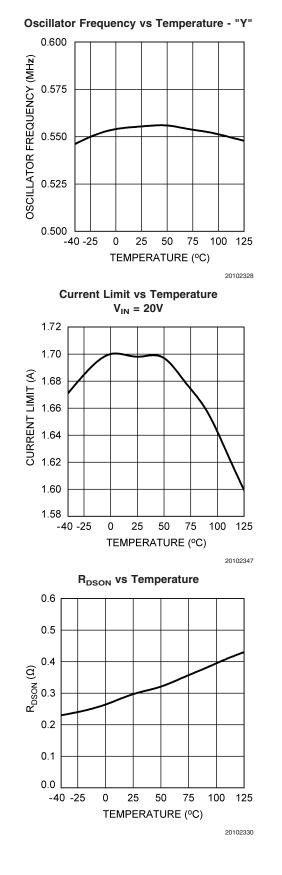
Specifications with standard typeface are for  $T_J = 25^{\circ}$ C, and those in **boldface type** apply over the full **Operating Temperature Range** ( $T_J = -40^{\circ}$ C to  $125^{\circ}$ C).  $V_{IN} = 5V$ ,  $V_{BOOST} - V_{SW} = 5V$  unless otherwise specified. Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

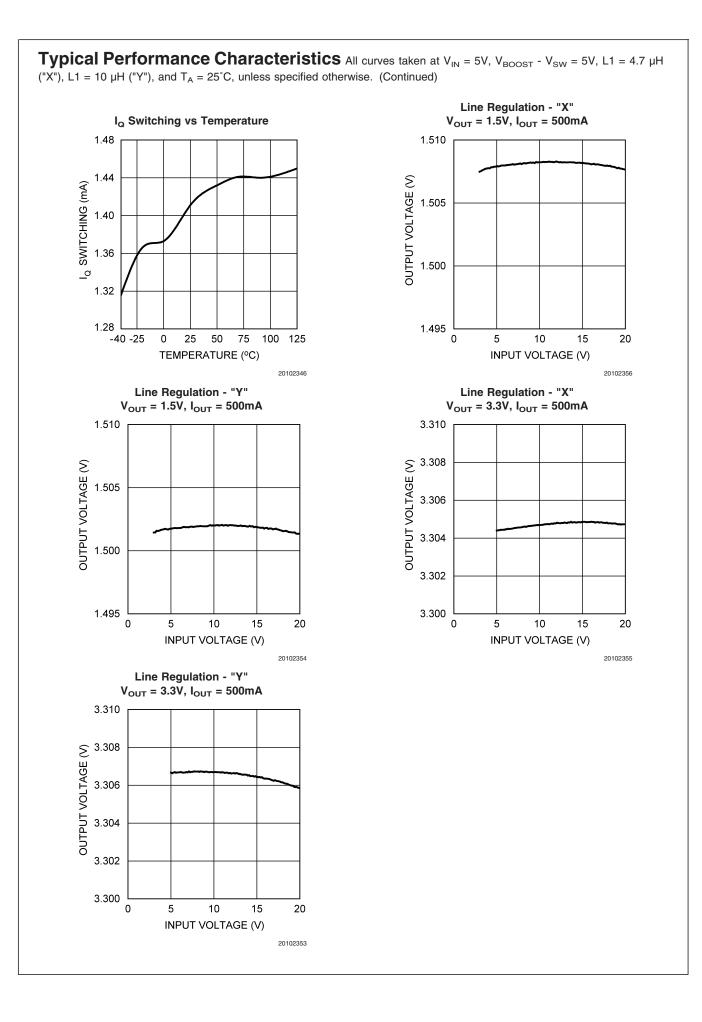
| Symbol                          | Parameter                           | Conditions                | Min<br>(Note 4) | <b>Typ</b><br>(Note 5) | Max<br>(Note 4) | Units |  |
|---------------------------------|-------------------------------------|---------------------------|-----------------|------------------------|-----------------|-------|--|
| V <sub>FB</sub>                 | Feedback Voltage                    |                           | 0.784           | 0.800                  | 0.816           | V     |  |
| $\Delta V_{FB} / \Delta V_{IN}$ | Feedback Voltage Line<br>Regulation | $V_{IN} = 3V$ to 20V      |                 | 0.01                   |                 | % / V |  |
| I <sub>FB</sub>                 | Feedback Input Bias Current         | Sink/Source               |                 | 10                     | 250             | nA    |  |
|                                 | Undervoltage Lockout                | V <sub>IN</sub> Rising    |                 | 2.74                   | 2.90            | v     |  |
| UVLO                            | Undervoltage Lockout                | V <sub>IN</sub> Falling   | 2.0             | 2.3                    |                 |       |  |
|                                 | UVLO Hysteresis                     |                           | 0.30            | 0.44                   | 0.62            |       |  |
| E                               | Switching Frequency                 | LM2734X                   | 1.2             | 1.6                    | 1.9             | MHz   |  |
| F <sub>sw</sub>                 |                                     | LM2734Y                   | 0.40            | 0.55                   | 0.66            |       |  |
| D                               | Maximum Duty Cycle                  | LM2734X                   | 85              | 92                     |                 | %     |  |
| D <sub>MAX</sub>                |                                     | LM2734Y                   | 90              | 96                     |                 |       |  |
| _                               | Minimum Duty Cycle                  | LM2734X                   |                 | 2                      |                 | %     |  |
| D <sub>MIN</sub>                |                                     | LM2734Y                   |                 | 1                      |                 |       |  |
| R <sub>DS(ON)</sub>             | Switch ON Resistance                | $V_{BOOST} - V_{SW} = 3V$ |                 | 300                    | 600             | mΩ    |  |
| I <sub>CL</sub>                 | Switch Current Limit                | $V_{BOOST} - V_{SW} = 3V$ | 1.2             | 1.7                    | 2.5             | А     |  |
| Ι <sub>Q</sub>                  | Quiescent Current                   | Switching                 |                 | 1.5                    | 2.5             | mA    |  |
|                                 | Quiescent Current (shutdown)        | V <sub>EN</sub> = 0V      |                 | 30                     |                 | nA    |  |
| I <sub>BOOST</sub>              | Boost Pin Current                   | LM2734X (50% Duty Cycle)  |                 | 2.5                    | 3.5             | mA    |  |
|                                 |                                     | LM2734Y (50% Duty Cycle)  |                 | 1.0                    | 1.8             |       |  |
| V <sub>EN_TH</sub>              | Shutdown Threshold Voltage          | V <sub>EN</sub> Falling   |                 |                        | 0.4             | v     |  |
|                                 | Enable Threshold Voltage            | V <sub>EN</sub> Rising    | 1.8             |                        |                 |       |  |
| I <sub>EN</sub>                 | Enable Pin Current                  | Sink/Source               |                 | 10                     |                 | nA    |  |
| I <sub>SW</sub>                 | Switch Leakage                      |                           |                 | 40                     |                 | nA    |  |


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see Electrical Characteristics.

Note 2: Human body model, 1.5k $\Omega$  in series with 100pF.


Note 3: Thermal shutdown will occur if the junction temperature exceeds 165°C. The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $\theta_{JA}$  and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly onto a 3" x 3" PC board with 2oz. copper on 4 layers in still air. For a 2 layer board using 1 oz. copper in still air,  $\theta_{JA} = 204$ °C/W.


Note 4: Guaranteed to National's Average Outgoing Quality Level (AOQL).


Note 5: Typicals represent the most likely parametric norm.



**Typical Performance Characteristics** All curves taken at  $V_{IN} = 5V$ ,  $V_{BOOST} - V_{SW} = 5V$ ,  $L1 = 4.7 \mu H$  ("X"),  $L1 = 10 \mu H$  ("Y"), and  $T_A = 25$ °C, unless specified otherwise. (Continued)





